Total No. of Questions : 8]	26	SEAT No. :
PA-2672		[Total No. of Pages : 3

[5927]-329 B.E. (Civil)

TRANSPORTATION ENGINEERING (2019 Pattern) (Semester - VII) (401002)

Time: 2½ Hours] [Max. Marks: 70 Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Figures to the right indicate full marks.
- 3) Use of logarithmic tables, slide rule, Molliers charts, electronic pocket calculator and steam tables is allowed.
- 4) Assume suitable data if necessary.
- 5) Neat diagrams must be drawn wherever necessary.
- Q1) a) The design speed of a highway is 90 kmph. There is horizontal curve of radius 200 m on a certain section Allowable limit of lateral coefficient of friction is 0.15.
 - i) Calculate the superelevation required to maintain this speed.
 - ii) If the maximum allowable superelevation is 7.0 percent, calculate the allowable speed on this horizontal curve.
 - b) Draw a neat cross section of VR in embankment and MDR in cutting in rural area: [2]
 - c) Define Camber?

OR

- Q2) a) The ascending gradient of 2 per cent meets a descending gradient of 1 in 80. Determine the length of summit curve to provide [10]
 - i) SSD and
 - ii) OSD of 470 m, for design speed of 80 kmph. Assume all other data as per IRC guidelines.
 - b) Calculate the stopping sight distance on a highway at an ascending gradient of Two percent for a design speed of 60 kmph. Assume other data as per IRC recommendations? [6]
 - c) List the various types of transition curves used on horizontal curves of highways. [2]

Q3)	a)	What are the different types of bituminous binders used in highway construction? Under what circumstances each of these materials is preferred? [6]
	b)	
	c)	Write a note on Marshall method of bituminous mix design. [5]
		OR
Q 4)	a)	For a construction of a bituminous road in a certain locality, contractor
		has received 30/40 grade of bitumen from refinery. Explain in brief the test to be carried out to confirm the grade of the bitumen. [6]
	b)	Define Elongation Index (EI). How EI is determined in the laboratory. [6]
	c)	Explain in brief the importance of gradation of aggregates in design of
		bituminous and Non bituminous layer of flexible pavement. [5]
Q5)	a)	Using the following data calculate the wheel load stress at the edge region of a cement concrete pavement using H.M. Westergaards's equation:
		Wheel load = 5100 kg , Modulus of Elasticity of concrete = $3 \times 10^5 \text{ kg/cm}^2$,
		Pavement thickness = 15 cm, Poisson's ratio = 0.15, Modulus of subgrade
		reaction = 7.0 kg/cm^3 , Radius of wheel load contact = 16 cm . [8]
	b)	Differentiate between warping stress and frictional stress in rigid
	ŕ	pavement. [6]
	c)	Write a note on joints in cement concrete pavement. [4]
		OR
0.0	,	
<i>Q6</i>)	a)	A two lane two way road is carrying an initial traffic of 1600 Commercial
		Vehicles per day (CVPD) is to be strengthened to cater the need of growing traffic. The rate of growth of traffic is 8% per annum. The
		pavement is to be designed for 20 years. Calculate the VDF if pavement
		has to sustain cumulative standard axle load repetitions of 33.40 million
		during its design life. It is suggested to use the factor of 0.5 to account
		for lateral placement of wheel loads. [8]
	b)	What do you mean by pavement design? State the any five factors to be
		considered for the design of rigid pavement (explanation of factors is
		not required) [6]
	c)	Differentiate between flexible and rigid payements. [4]

Q7) a) b) c)	a c 1.5 i) ii) b) De	lischarge of 400 m ³ p 5. Calculate the scour Bridge consists of Three spans of 35 offine bridge. State the	Two spans of 40 m each m each. e various components of bridge. ements of an ideal permanent way. OR ms:	
Q8) a)	1.5 i) ii) De Sta i)	Bridge consists of Three spans of 35 fine bridge. State the stee the various require Submersible bridge Skew bridge Class B bridge	Two spans of 40 m each m each. e various components of bridge. ements of an ideal permanent way. OR	[8] [4] [5]
Q8) a)	i) ii) De c) Sta ii)	Bridge consists of Three spans of 35 fine bridge. State the ate the various require Submersible bridge Skew bridge Class B bridge	Two spans of 40 m each m each. e various components of bridge. ements of an ideal permanent way. OR	[4] [5]
Q8) a)	ii) De Sta i) De	Three spans of 35 of the bridge. State the state the various required submersible bridge. Skew bridge. Class B bridge.	m each. evarious components of bridge. ements of an ideal permanent way. OR	[4] [5]
Q8) a)	De Sta	fine bridge. State the tet the various required the following term Submersible bridge Skew bridge Class B bridge	evarious components of bridge. ements of an ideal permanent way. OR	[4] [5]
Q8) a)	e) Sta	fine the following term Submersible bridge Skew bridge Class B bridge	ements of an ideal permanent way. OR	[5]
<i>Q8</i>) a)	n) De	Skew bridge Class B bridge	OR	
b	i)	Submersible bridge Skew bridge Class B bridge		[8]
b	i)	Submersible bridge Skew bridge Class B bridge		[8]
b	i)	Submersible bridge Skew bridge Class B bridge	e Sin spirit	[8]
b	i)	Submersible bridge Skew bridge Class B bridge	e Sin sair	[O]
		Skew bridge Class B bridge		
	11)	Class B bridge		
	iii)			
	(% "	Through bridge	0, 5,	
	(IV)	imough on ug	€	
c) Sta	ate the merits and den	nerits of failway transportation.	[4]
	e) Sta	ate the various ideal b	oridge site characteristics.	[5]
			(3) (6)	
			ભારત કારા	9
				3
		_	6.	
		RAJARO.	y [*]	
				,,
		×		, ,
			0, 20	
			6.	
[5927]				
	/]-329		3	
	7]-329		3 89.26.20	